Posts

Showing posts with the label Polyketone

Ion Exchange Membrane for Reverse Electrodialysis

Image
     JUNIPER PUBLISHERS-   ACADEMIC JOURNAL OF POLYMER SCIENCE Abstract Ion exchange membranes (IEMs) are used for exchanging or removing ions from the solutions so that they are fabricated by polymers rather than metals or ceramics. When metal is in contact with the solutions, some reaction or corrosion occurs, and ceramic is difficult to use in membrane form because it is brittle. Also, normal metals and ceramics do not have high ion-exchange properties so that polymers are used widely as a host material of the IEM. The conventional IEMs are either layered membrane consisted of ion exchange material and support layer, and thick bulk membrane. There are no critical problems to use them for water treatment, but they are not suitable for electrochemical application such as reverse electrodialysis (RED). RED is a method of making electricity by sequential ion transport through semi-permeable membranes and electrochemical reaction at the electrode part so that the IEMs ...

A Polymethylvinylsiloxane/Low Density Polyethylene Blending Melt: Dynamic Rheological Behavior and Relaxation Time

Image
   JUNIPER PUBLISHERS-   ACADEMIC JOURNAL OF POLYMER SCIENCE Abstract The dynamic rheological behavior of a polymethylvinylsiloxane (PMVS)/ low density polyethylene (LDPE) blending melts at 150,180 and 210 ℃ is investigated by small amplitude oscillatory shear on a rotational rheometer. LDPE has higher viscosity than PMVS at three temperatures, which affects the morphology and rheological response of the blends. The LDPE-rich blends have smaller dispersed droplets and longer relaxation time than the PMVS-rich blends. Higher temperature means less viscosity as well as dynamic modulus difference between the LDPE-rich blend and the PMVS-rich blend. Increasing temperature fastens relaxation of polymer samples thus relaxation time at higher temperature is shorter than that at low temperature. Phase separation can be shown at some weight ratio of PMVS/LDPE through the failure of time-temperature superposition principle and double peaks of relaxation time including the form rela...